TURBO MACHINERY

Course Code	19ME4501A	Year	III	Semester	I
Course Category:	Program Elective	Branch	ME	Course Type	Theory
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Nil
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Cours	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	CO1 State precise definition of turbomachinery L1				
CO2	Apply the laws of thermodynamics on turbomachinery L2				
CO3	CO3 Understand the principle of operation of Radial flow pumps L1				
CO4	CO4 Perform the preliminary design of hydraulic turbines L3				
CO5	Analyze the stage performance of compressors L4				

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	-	-	-	-	-	-	-	-	2	2	1
CO2	3	3	3	-	-	-	-	-	-	-	-	2	2	1
CO3	3	3	3	-	-	-	-	-	-	-	-	2	2	1
CO4	2	2	3	-	-	-	-	-	-	_	-	2	2	1
CO5	3	3	3	-	-	-	-	-	-	-	-	2	2	1

	Course Content	Mapped CO s
UNIT-1	Introduction:	CO1
	Definition of turbo machine, parts of turbo machines, Comparison with	
	positive displacement machines, Classification, Dimensionless parameters	
	and their significance, Effect of Reynolds number, Unit and specific	
	quantities, model studies.	
UNIT-2	Thermodynamics of fluid flow: Application of first and second law of	CO 2
	thermodynamics to turbo machines, Efficiencies of turbo machines, Static	
	and Stagnation states, Incompressible fluids and perfect gases, overall	
	isentropic efficiency, stage efficiency (their comparison) and polytropic	
	efficiency for both compression and expansion processes. Reheat factor for	
	expansion process	
UNIT-3	General Analysis of Turbo machines: Radial flow compressors and pumps	CO3
	– general analysis, Expression for degree of reaction, velocity triangles,	
	Effect of blade discharge angle on energy transfer and degree of reaction,	
	Effect of blade discharge angle on performance, Theoretical head – capacity	
	relationship, General analysis of axial flow pumps and compressors, degree	
	of reaction, velocity triangles, Problems.	

UNIT-4	Hydraulic Turbines: Classification, various efficiencies. Pelton turbine –			
	velocity triangles, design parameters, Maximum efficiency. Francis turbine			
	-velocity triangles, design parameters, runner shapes for different blade			
	speeds. Draft tubes- Types and functions. Kaplan and Propeller turbines -			
	velocity triangles, design parameters. Problems.			
UNIT-5	Pumps and Compressors: Classification and parts of centrifugal pump,	CO5		
	different heads and efficiencies of centrifugal pump, Cavitation, Need for			
	priming, Pumps in series and parallel. Problems.			
	Stage velocity triangles, Stage work, Pressure developed, stage efficiency			
	and surging and problems. Axial flow Compressors: Expression for pressure			
	ratio developed in a stage, work done factor, efficiencies and stalling.			
	Problems.			

	Learning Resources
Text	1. An Introduction to Energy Conversion, Volume III, Turbo machinery, V. Kadambi
Books:	and Manohar Prasad, New Age International Publishers, reprint 2008.
	2. Turbo Machines ,B.U.Pai , 1st Editions, Wiley India Pvt, Ltd.
	3. Turbines, Compressors & Fans, S. M. Yahya, Tata McGraw Hill Co. Ltd., 2nd
	edition, 2002
Referen	1. Principals of Turbo machines, D. G. Shepherd, The Macmillan Company (1964).
ce	2. Fluid Mechanics & Thermodynamics of Turbo machines, S. L. Dixon, Elsevier
Books:	(2005).
	3. Text Book of Turbo machines, M. S. Govindegouda and A. M. Nagaraj, M. M.
	Publications, 4Th Ed, 2008.
	4. Gopalakrishnan G, Prithvi Raj D, "A treatise on Turbomachines", Scited
	Publications, Chennai, 2002.
	5. Sheppard, Principles of Turbomachinery.
	6. R.K.Turton, Principles of Turbomachinery, E & F N Spon Publishers, London &
	New York.
E -	1. https://nptel.ac.in/courses/112/106/112106200/
Resourc	2. https://nptel.ac.in/courses/101/101/101101058/
es	3. https://nptel.ac.in/courses/112/104/112104117/
& other	
digital	
Material	
:	